Ano ang Kakayahang Pagtukoy?
Ang koepisyent ng pagpapasiya ay isang panukalang ginamit sa pagsusuri sa istatistika na nagtatasa kung gaano kahusay na nagpapaliwanag at hinuhulaan ng isang modelo sa hinaharap na mga kinalabasan. Ito ay nagpapahiwatig ng antas ng ipinaliwanag na pagkakaiba-iba sa set ng data. Ang koepisyent ng pagpapasiya, na kilala rin bilang "R-square, " ay ginagamit bilang isang gabay upang masukat ang kawastuhan ng modelo.
Ang isang paraan ng pagpapakahulugan sa figure na ito ay upang sabihin na ang mga variable na kasama sa isang naibigay na modelo ay nagpapaliwanag ng tinatayang x% ng sinusunod na pagkakaiba-iba. Kaya, kung ang R 2 = 0.50, kung gayon ang humigit-kumulang kalahati ng sinusunod na pagkakaiba-iba ay maaaring ipaliwanag ng modelo.
R-parisukat
Mga Key Takeaways
- Ang koepisyent ng pagpapasiya ay isang kumplikadong ideya na nakasentro sa statistic analysis ng isang hinaharap na modelo ng data.Ang koepisyent ng pagpapasiya ay ginamit upang ipaliwanag kung gaano kalaki ang pagkakaiba-iba ng isang kadahilanan na maaaring sanhi ng kaugnayan nito sa isa pang kadahilanan.
Pag-unawa sa Coefficient of Determination
Ang koepisyent ng pagpapasiya ay ginagamit upang ipaliwanag kung gaano kalaki ang pagkakaiba-iba ng isang kadahilanan na maaaring sanhi ng kaugnayan nito sa isa pang kadahilanan. Ito ay lubos na umaasa sa pagsusuri sa trend at kinakatawan bilang isang halaga sa pagitan ng 0 at 1.
Ang mas malapit sa halaga ay sa 1, mas mahusay ang akma, o relasyon, sa pagitan ng dalawang mga kadahilanan. Ang koepisyent ng pagpapasiya ay ang parisukat ng koepisyent ng ugnayan, na kilala rin bilang "R, " na nagpapahintulot na ipakita ang antas ng linear correlation sa pagitan ng dalawang variable.
Ang ugnayan na ito ay kilala bilang "kabutihan ng akma." Ang isang halaga ng 1.0 ay nagpapahiwatig ng isang perpektong akma, at sa gayon ito ay isang napaka-maaasahang modelo para sa mga pagtataya sa hinaharap, na nagpapahiwatig na ipinapaliwanag ng modelo ang lahat ng mga pagkakaiba-iba na sinusunod. Ang isang halaga ng 0, sa kabilang banda, ay magpahiwatig na ang modelo ay nabigong hindi tumpak na modelo ang data. Para sa isang modelo na may maraming mga variable, tulad ng isang maramihang modelo ng pagbabalik, ang nababagay na R 2 ay isang mas mahusay na koepisyent ng pagpapasiya. Sa ekonomiya, ang isang R 2 na halaga sa itaas ng 0.60 ay nakikita bilang sulit.
Mga Bentahe ng Pag-aaral ng Coefficient of Determination
Ang koepisyent ng pagpapasiya ay ang parisukat ng ugnayan sa pagitan ng hinulaang mga marka sa isang set ng data kumpara sa aktwal na hanay ng mga marka. Maaari rin itong ipahiwatig bilang parisukat ng ugnayan sa pagitan ng mga marka ng X at Y, na ang X ay ang independiyenteng variable at ang Y ang umaasang variable.
Anuman ang representasyon, ang isang R-parisukat na pantay sa 0 ay nangangahulugan na ang nakasalalay na variable ay hindi mahuhulaan gamit ang independyenteng variable. Sa kabaligtaran, kung katumbas ito ng 1, nangangahulugan ito na ang umaasa sa isang variable ay palaging hinuhulaan ng independyenteng variable.
Ang isang koepisyent ng pagpapasiya na nahuhulog sa loob ng saklaw na ito ay sumusukat sa lawak na ang dependant variable ay hinuhulaan ng independyenteng variable. Ang isang R-parisukat ng 0.20, halimbawa, ay nangangahulugang 20% ng umaasa sa variable ay hinulaan ng independyenteng variable.
Ang kabutihan ng akma, o ang degree ng linear correlation, ay sumusukat sa distansya sa pagitan ng isang marapat na linya sa isang graph at lahat ng mga puntos ng data na nakakalat sa paligid ng graph. Ang masikip na hanay ng data ay magkakaroon ng linya ng regression na napakalapit sa mga puntos at may isang mataas na antas ng akma, nangangahulugang ang distansya sa pagitan ng linya at ang data ay napakaliit. Ang isang mahusay na akma ay may isang R-parisukat na malapit sa 1.
Gayunpaman, ang R-parisukat ay hindi matukoy kung ang mga puntos ng data o hula ay bias. Hindi rin nito sinabi sa analyst o gumagamit kung ang koepisyent ng halaga ng pagpapasiya ay mabuti o hindi. Ang isang mababang R-parisukat ay hindi masama, halimbawa, at nasa sa tao na gumawa ng isang desisyon batay sa R-parisukat na numero.
Ang koepisyent ng pagpapasiya ay hindi dapat maipaliwanag nang walang pasubali. Halimbawa, kung ang R-parisukat ng isang modelo ay iniulat sa 75%, ang pagkakaiba-iba ng mga pagkakamali nito ay 75% mas mababa kaysa sa pagkakaiba-iba ng umaasang variable, at ang karaniwang paglihis ng mga pagkakamali nito ay 50% mas mababa kaysa sa karaniwang paglihis ng umaasa variable. Ang karaniwang paglihis ng mga pagkakamali ng modelo ay tungkol sa isang-katlo ang laki ng karaniwang paglihis ng mga error na makukuha mo sa isang pare-pareho lamang na modelo.
Sa wakas, kahit na ang isang R-parisukat na halaga ay malaki, maaaring walang kahulugan ng istatistika ng mga variable na paliwanag sa isang modelo, o ang mabisang sukat ng mga variable na ito ay maaaring maliit sa mga praktikal na termino.
![Kaepektibo ng pagpapasiya: pangkalahatang-ideya Kaepektibo ng pagpapasiya: pangkalahatang-ideya](https://img.icotokenfund.com/img/financial-analysis/410/coefficient-determination.jpg)